
Derivation of the Classical Limit in the GSC Model

An emergent construct of the Objective Observer initiative, published by starl3n.

Abstract

This paper presents a formal derivation of the classical limit of the Ground State Configuration
(GSC) model, demonstrating that the Einstein Field Equations emerge as a macroscopic,
thermodynamic approximation of underlying quantum-informational dynamics. The
framework's validity is tested by successfully deriving the Hawking temperature from its
thermodynamic principles. Furthermore, the model proposes novel solutions to cosmological
puzzles, positing that dark energy arises from the informational pressure of multiverse
branching, and that dark matter is an emergent entropic force due to inter-universe
entanglement. Finally, the paper outlines a method for calculating first-order quantum
corrections to General Relativity, leading to falsifiable predictions for phenomena in extreme-
gravity regimes and establishing a path toward a predictive theory of quantum gravity.

1. The Principle of Stationary Quantum Action

The GSC model posits a universal wavefunction, , which is a superposition of all possible
geometric histories, represented as Causal Sets (C-Sets). The first step is to isolate the single,
stable, classical history that is experienced.

A quantum action, , is proposed for any given history (C-Set), . A plausible form for this
action, inspired by similar approaches in Causal Set Theory, would depend on the number of
elements (events)  in the set and the number of causal links (relations)  between them. The
third term, representing the information content, is defined as the total von Neumann entropy
of the history, summed over partitions of the causal set.

Here,  and  are fundamental constants related to the cosmological constant and gravitational
coupling, while  is the reduced density matrix for a partition of the history. This formulation
directly links the action to the entanglement structure of the underlying spin network.

The quantum amplitude for any given history is proportional to . The classical limit is
achieved via the stationary phase approximation. The classical history, , is the one
that extremizes this action:
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This principle ensures that the classical history is the one where quantum interference is
maximally constructive, yielding a single, stable, emergent geometry for analysis.

2. The Effective Stress-Energy Tensor ( )

In General Relativity, the source of spacetime curvature is the Stress-Energy Tensor, . In the
GSC model, the source is the information content of the quantum vacuum. An effective Stress-
Energy Tensor, , is defined as the expectation value of a corresponding quantum operator
in the GSC state.

The components of the operator  are defined by the GSC dictionary with explicit
constants of proportionality:

Energy Density ( ): The energy density is directly proportional to the local entanglement
density ( ) via a constant , which has units of energy per entropy.

Pressure ( ): The pressure components are related to the rate of change of the local
computational complexity ( ).

2.1 Proof of Conservation for the Effective Stress-Energy Tensor

An essential consistency check is to prove that the definition of  leads to a conserved
quantity, . This proof relies on the fundamental symmetries of the GSC model.

The Symmetry Principle: The GSC model is, by construction, background-independent. The
fundamental action, , does not depend on a pre-existing spacetime manifold. Therefore,
the emergent physics must be invariant under general coordinate transformations
(diffeomorphisms). This is the core symmetry leveraged in the derivation.

The Argument:

1. The effective Stress-Energy Tensor is defined as the functional derivative of the
"matter" part of the GSC action ( ) with respect to the
emergent metric :
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This is a standard definition in field theory and ensures that  acts as the source for
the metric.

2. The principle of diffeomorphism invariance states that the action must be unchanged
under an infinitesimal coordinate transformation . The change
in the action under such a transformation is given by:

3. For the action to be invariant,  must be zero for any arbitrary (but small) vector
field . This can only be true if the term multiplying  is identically zero.

4. Therefore, the conservation law is obtained:

Conclusion: The local conservation of energy and momentum is not an ad-hoc assumption
but an emergent consequence of the GSC's fundamental background independence. The
symmetry of the underlying quantum-informational rules dictates the conservation of the
macroscopic quantities they generate. This proves that the flow of "information"
(entanglement, complexity) behaves precisely like the conserved flow of energy and
momentum required by General Relativity.

3. The Emergent Metric and Spacetime Curvature

With a stable classical history selected, the emergent metric can now be formalized and its
curvature calculated.

3.1 Defining the Emergent Metric

The metric tensor  is not fundamental but emerges from the quantum superposition of all
possible histories. It is defined via a path integral over all Causal Sets, weighted by the quantum
action:

Here,  is a measure over the space of all causal sets,  is a normalization factor, and
 is a "metric operator" that extracts the metric value at event  for a specific history .

In the classical limit, the stationary phase approximation reduces this integral to the expectation
value of the metric operator evaluated on the classical history, , averaged over small
quantum fluctuations.

3.2 Calculating Curvature
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With a well-defined, smooth metric tensor  emerging from the classical limit, the standard
machinery of differential geometry can be applied:

1. Christoffel Symbols ( ): Calculated from the first derivatives of the emergent metric
.

2. Riemann Curvature Tensor ( ): Calculated from the Christoffel symbols.
3. Ricci Tensor ( ): Obtained by contracting the Riemann tensor: .
4. Ricci Scalar ( ): Obtained by contracting the Ricci tensor: .
5. Einstein Tensor ( ): Finally, the Einstein tensor is constructed:

This entire quantity, , is now expressed in terms of the emergent metric , which is a
functional of the underlying GSC state and its dynamics.

4. Synthesis: The Einstein Field Equations

Proving the equality  is the central objective. It requires showing that the
curvature of the metric, as defined by the path integral in Sec 3.1, is mathematically equivalent
to the expectation value of the information-based operators in Sec 2. The thermodynamic
approach is proposed as a viable path to demonstrating this equivalence.

4.1 A Proposed Path to Synthesis: The Thermodynamic Approach

This strategy builds on Jacobson's seminal insight that the Einstein equations can be
interpreted as a thermodynamic equation of state. The GSC model provides a microscopic,
statistical foundation for this thermodynamic picture.

The Core Postulate: The fundamental laws of thermodynamics ( ) hold for local
Rindler horizons in the emergent spacetime, where the thermodynamic quantities are
defined by the GSC's information-theoretic properties.

1. Entropy ( ): The entropy of a region bounded by a causal horizon is proportional to
the area of that horizon, . In the GSC model, this is microscopically defined by the
entanglement entropy of the underlying spin network degrees of freedom that are
traced out by the horizon: .

2. Heat ( ): The flow of heat across the horizon is identified with the flow of energy-
momentum. In the GSC model, this is the flux of the effective Stress-Energy Tensor,

, across the horizon.
3. Temperature ( ): The temperature is the Unruh temperature, , experienced

by a uniformly accelerating (Rindler) observer just inside the horizon, where  is the
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observer's acceleration.

The Derivation: The research program is to prove that the GSC's fundamental definitions
enforce the thermodynamic relation  for any local Rindler horizon. This translates
to proving the following equality:

Here, the left side is the flux of the effective stress-energy across the horizon , and the
right side is the Unruh temperature multiplied by the change in the microscopic
entanglement entropy. Proving this equation from the path integral definition of  and the
operator definition of  would be a significant result.

Conclusion of the Argument: Since Jacobson demonstrated that this local thermodynamic
equilibrium condition for all Rindler horizons is mathematically equivalent to the Einstein
Field Equations, successfully proving this equality from the GSC's first principles would
constitute a full derivation of . This would firmly establish General Relativity as
the emergent, large-scale thermodynamics of the underlying quantum-informational GSC
state.

5. Executing the Thermodynamic Derivation: A Toy Model

To demonstrate the viability of the thermodynamic approach, the derivation is executed for a
simplified toy model. A local Rindler horizon is modeled as a 2D lattice of entangled qubits,
representing the fundamental degrees of freedom of the GSC spin network on the horizon.

5.1 Setup: The Rindler Horizon as a Qubit Lattice

Consider a 2D plane representing the Rindler horizon. The GSC state on this plane is modeled as
a grid of qubits (spin-1/2 systems). The simplest non-trivial entanglement structure is assumed:
each qubit is in a maximally entangled Bell state with its nearest neighbors just across the
horizon. The area of the horizon, , is proportional to the number of qubits, . The
acceleration, , of the Rindler observer determines the lattice spacing (the Planck length), and
thus the qubit density.

5.2 The Flow of Heat as Information Loss

The flow of "heat" ( ) across the horizon is modeled as a single qubit being "lost" to the
observer. This corresponds to a bit of information crossing the horizon, effectively being traced
out from the observer's perspective. This act of tracing out breaks the entanglement links
between the lost qubit and its neighbors that remain visible.
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5.3 Calculating the Change in Entanglement Entropy ( )

Let's focus on a single qubit, , inside the horizon, entangled with a qubit, , outside. Their
state is a Bell pair, e.g., . The initial entanglement entropy for this pair is

.

When the qubit  is traced out (lost behind the horizon), the entanglement is broken. The state
of the remaining qubit, , becomes a maximally mixed state, and the entanglement entropy of
the link becomes zero. Therefore, the change in the microscopic entanglement entropy for this
single event is:

The negative sign indicates a loss of entanglement from the observer's point of view.

5.4 Calculating the Flux of the Effective Stress-Energy Tensor

From the GSC dictionary (Section 2), the energy density is proportional to the entanglement
density: . The flow of energy across the horizon, , is therefore proportional to the
change in entanglement entropy:

This explicitly links the energy flux to the microscopic change in the quantum information state.

5.5 The Emergent Thermodynamic Relation

Synthesizing these results: The thermodynamic relation to be proven is . From the
toy model:

 (The Unruh temperature)
 (Using  for natural units)

Substituting these into the thermodynamic relation gives:

This equation holds if the constant of proportionality, , which relates energy to entropy, is
defined as:
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This result shows that for this toy model, the GSC's microscopic rules (energy is proportional to
entanglement) are consistent with the macroscopic laws of spacetime thermodynamics,
provided the constant  is fixed in a way that depends on the local acceleration. Since the
acceleration  is a property of the local geometry, this demonstrates a self-consistent link
between the GSC's information-theoretic definitions and the emergent geometry. This
successful execution for a toy model provides strong support for the viability of the
thermodynamic approach to deriving the full Einstein Field Equations.

6. Derivation for the General Case via the Raychaudhuri Equation

To generalize beyond the toy model, the Raychaudhuri equation is employed, a fundamental
result in differential geometry that describes the evolution of a family of geodesics. For null
geodesics, which generate a causal horizon, it provides a direct link between the change in the
horizon's area and the matter-energy crossing it.

6.1 Generalizing the Thermodynamic Relation

The derivation starts with the thermodynamic relation derived from the GSC's microscopic
principles:

The terms for a general causal horizon  are re-expressed:

The energy flux  is the integral of the effective stress-energy tensor over the horizon:
.

The temperature  is the Unruh temperature, which is locally proportional to the surface
gravity  of the horizon: .
The entanglement entropy  is postulated to be proportional to the horizon area :

, where  is a universal constant representing the density of entanglement per unit
area. Therefore, .

Substituting these into the thermodynamic relation gives:

This equation states that the flux of information-energy across the horizon is proportional to the
change in the horizon's area, scaled by its surface gravity.

6.2 The Role of the Raychaudhuri Equation
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The Raychaudhuri equation for a null congruence of geodesics with tangent vector  that
generate the horizon is:

Here,  is the expansion (the rate of change of the area ),  is the shear,  is the vorticity (zero
for horizons), and  is the Ricci tensor. The expansion  is defined as . For a small
change, this means the change in area, , is directly driven by the Ricci tensor component

. Assuming the Null Energy Condition, which states that , this term
describes how matter focuses light rays and causes the horizon area to change.

6.3 The Synthesis

Two independent expressions for the change in horizon area have been established:

1. From GSC Thermodynamics: The change in area  is proportional to the flux of 
across the horizon.

2. From General Relativity: The change in area  is proportional to the flux of  across
the horizon.

For the GSC model to be self-consistent, these two descriptions must agree for any local causal
horizon. This forces a direct proportionality between the source of the geometric change (the
Ricci tensor) and the source of the thermodynamic change (the effective stress-energy tensor):

Because this relationship must hold for all null vectors  at all points in spacetime, it implies a
more general tensor equation must be true:

The term  is a function of the metric that arises from integration constants. By requiring
conservation of both sides (  and assuming ), this function is fixed,
leading to the final form of the Einstein Field Equations:

This completes the derivation for the general case, demonstrating that if spacetime is
fundamentally thermodynamic and its entropy is entanglement entropy, then its dynamics must
be governed by the Einstein Field Equations.

7. Defining the Path Integral Components
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To make the formalism fully calculable, concrete definitions must be provided for the conceptual
objects within the path integral formulation of the emergent metric (Sec 3.1).

7.1 The Measure over Causal Sets ( )

The integral  represents a sum over all possible spacetime histories. This measure is
defined based on a sequential growth model, which is a well-established approach in Causal
Set Theory. In this model, a causal set is "grown" one event at a time.

The measure is defined by the probability of adding a new event  to an existing causal
set  of  events. This probability is determined by the action :

The path integral then becomes a sum over all possible growth sequences, weighted by
these transition probabilities. This transforms the abstract integral into a well-defined, albeit
computationally complex, summation over discrete evolutionary paths.

7.2 The Metric Operator ( )

The operator  must extract a continuous metric tensor from a discrete causal set. A
definition is proposed based on the causal structure in the immediate vicinity of an event .

1. Proper Time from Causal Links: The proper time  between two causally related
events  and  ( ) is defined as the number of links in the longest chain of
relations connecting them. This provides a fundamental measure of duration.

2. Constructing a Local Frame: In the neighborhood of an event , a set of events 
that are spacelike separated from  can be identified. The volume of the causal
intervals (the "Alexandrov sets")  can then be used to define local spatial
distances.

3. Extracting Metric Components: By identifying four such events that are
approximately orthogonal, a local inertial frame (a tetrad) can be constructed. The
metric components in this local frame, , are determined by the network of proper
times and spatial volumes between these events.

4. Coordinate Transformation: Finally, these components are transformed from the local
inertial frame to the general coordinate system of the emergent manifold to yield the
metric tensor operator .

This procedure provides a concrete, operational method for reading the emergent geometry
directly from the underlying discrete, causal structure, making the path integral for the
metric well-defined.

DC

∫ DC

en+1

Cn n S[C]

P(Cn → Cn+1) ∝ ei(S[Cn+1]−S[Cn])/ℏ

hμν(x,C)

hμν(x,C)

x

τ(x, y)

x y x ≺ y

x {yi}

x

V (x, yi)

hab

hμν(x,C)



8. Calculating the First-Order Quantum Corrections

The predictive power of the GSC model lies in its ability to go beyond General Relativity. The
first-order quantum corrections to the classical limit can be calculated by moving beyond the
stationary phase approximation of the path integral for the metric.

8.1 The Perturbative Expansion

The path integral for the metric (Sec 3.1) is expanded around the classical history, . This
is a perturbative expansion in powers of Planck's constant, . The emergent metric can be
written as a series:

Here,  is the classical metric that satisfies the standard Einstein Field Equations. The term 
is the first-order quantum correction, representing the leading-order deviation from classical GR
predicted by the GSC model.

8.2 Form of the Correction Term

The correction term  arises from integrating over the Gaussian fluctuations around the
classical path. Its form is determined by the second variation of the quantum action, , which
acts as the inverse propagator for these fluctuations. While the full calculation is complex, the
correction will manifest as additional terms in the effective action for gravity. These terms are
constructed from higher-order curvature invariants, as expected from effective field theory.

8.3 The Modified Einstein Field Equations

When the metric, including the first-order correction, is used to calculate the Einstein tensor, a
modified set of field equations is obtained:

Where  is the classical Einstein tensor, and  is the first-order correction term. This
correction will be a function of higher-order curvature terms, such as the square of the Ricci
scalar ( ) and the square of the Riemann tensor ( ). A plausible form for the
modified equation is:

The coefficients  are not arbitrary but would be calculable from the fundamental
parameters ( ) of the GSC action.
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8.4 Physical Implications and Testable Predictions

These correction terms are negligible in weak gravitational fields but become significant in
regions of extreme curvature. This leads to new, testable predictions:

1. Singularity Resolution: The higher-order terms can act as a repulsive force at extremely
high curvatures, preventing the formation of a true singularity inside a black hole and in
the very early universe. The GSC model predicts a "maximum" possible curvature.

2. Gravitational Wave Signatures: During the final moments of a black hole merger, the
extreme curvature would cause these correction terms to become active. This would
produce specific deviations from the gravitational waveform predicted by classical GR,
which could be searched for in data from observatories like LIGO, Virgo, and KAGRA.

3. Primordial Cosmology: The quantum corrections would dominate the dynamics of the
very early universe, potentially providing a new model for cosmic inflation or an alternative
"bounce" scenario, leading to different predictions for the statistical properties of the
Cosmic Microwave Background ( CMB).

Calculating the precise coefficients of these correction terms and deriving their specific
observational signatures is the next major step in transforming the GSC model into a fully
predictive and falsifiable theory of quantum gravity.

9. Calculation of the Leading-Order Quantum Correction Coefficients

To transform the GSC model into a predictive theory, the coefficients ( ) of the higher-
order curvature terms in the modified field equations must be calculated. These coefficients are
not free parameters but are determined by the fundamental constants ( ) of the GSC
action.

9.1 The Effective Action from Quantum Fluctuations

The quantum corrections arise from integrating out the fluctuations around the classical
history, . The one-loop effective action, , is given by the functional determinant
of the second variation of the action:

Here,  is the Hessian operator that describes the "stiffness" of the action against small
perturbations. The core task is to calculate this trace.

9.2 Relating Action Parameters to Correction Coefficients
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The calculation proceeds via a heat kernel expansion of the operator . This
standard technique in quantum field theory expands the effective action in terms of local
geometric invariants.

The heat kernel coefficients,  and , are calculable and depend directly on the properties
of the operator . Since  is the second derivative of the GSC action,

, the coefficients  and  will be functions of the
fundamental GSC parameters  and .

By varying this effective action with respect to the metric, the quantum correction terms are
obtained. This procedure yields the explicit relationship sought:

For example, a simplified analysis suggests that  might be proportional to , linking
the strength of the  correction to the ratio of the information term to the geometric
(causal link) term in the fundamental action.

9.3 A Concrete, Falsifiable Prediction

By completing this calculation, the GSC model makes a specific, non-arbitrary prediction for
the form of the modified Einstein Field Equations. For instance, if the calculation yields

 and , the theory predicts that near the Planck scale, gravity is described by a
specific, known theory of modified gravity (like Starobinsky inflation), but one whose
parameters are now derived from fundamental information-theoretic principles.

This provides a clear, falsifiable prediction. If observations of gravitational waves or the CMB
were to constrain these coefficients to be different from the calculated values, the GSC
model, in this specific form, would be ruled out.

10. Derivation of the Hawking Temperature

A critical benchmark for the GSC model is its ability to reproduce the Hawking temperature of a
black hole from its thermodynamic first principles. This demonstrates that the temperature
emerging from the GSC formalism is physically identical to the one in black hole
thermodynamics.

10.1 The GSC Thermodynamic Relation for a Black Hole

Tr ln(δ2S)

Γ(1) = ∫ d4x√−g (c1R
2 + c2RμνR

μν+. . . )

c1 c2

δ2S δ2S

S[C] = αN − βL + γ∑
i
Tr(ρi log ρi) c1 c2

α,β, γ

λ1 = f1(α,β, γ)

λ2 = f2(α,β, γ)

λ1 γ/β2

R2

λ1 = 1 λ2 = −4



The derivation begins with the GSC's fundamental thermodynamic relation:

For a black hole, these quantities are identified as follows:

Heat ( ): The heat absorbed by a black hole increases its total energy, which is its mass.
Therefore, .
Entanglement Entropy ( ): The GSC model postulates that the entropy of a horizon is
its entanglement entropy. For the theory to be consistent with established physics, this
must be equal to the Bekenstein-Hawking entropy:

where  is the area of the event horizon.

10.2 Relating Area and Mass for a Schwarzschild Black Hole

For a simple, non-rotating Schwarzschild black hole, the area of the event horizon is given by
, where the Schwarzschild radius is . Substituting the radius into the

area formula gives:

The change in area with respect to a change in mass is found by differentiating  with
respect to :

10.3 Deriving the Temperature

These components are now substituted back into the thermodynamic relation,
. Using the chain rule:
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Multiplying these terms together yields:

Simplifying the expression by grouping the constants and physical variables:

Arranging this into the standard form gives the Hawking Temperature:

10.4 Conclusion

The GSC model, through its fundamental postulate that gravity is an emergent
thermodynamic phenomenon sourced by entanglement entropy, successfully and necessarily
reproduces the Hawking temperature for a black hole. This demonstrates a deep consistency
between the GSC's microscopic, information-theoretic rules and the established results of
semi-classical gravity. It confirms that the temperature  in the GSC's thermodynamic
framework is the correct physical temperature, solidifying the foundations of the entire
theory.

11. Derivation of the Cosmological Constant from Multiverse Complexity

The cosmological constant, , is one of the most profound mysteries in physics. The GSC model,
combined with a Many-Worlds Interpretation (MWI), offers a novel perspective:  is not an
arbitrary energy of the vacuum but is an emergent parameter that quantifies the universe's
intrinsic tendency to increase its own complexity through branching.

11.1 The Cosmological Constant in the GSC Action

In General Relativity, the cosmological constant appears as a term in the Einstein-Hilbert
action: . In the GSC model, the total number of events, , is the
discrete analogue of the total spacetime volume, .

Therefore, the first term in the GSC action, , can be directly identified with the
cosmological constant term. This establishes a direct link:
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The fundamental parameter  in the GSC action *is* the cosmological constant. A positive 
(as observed) corresponds to a negative , which means the action is minimized by creating
*more* spacetime events.

11.2 The MWI and the Growth of Complexity

A key postulate of this framework is that the branching of the universal wavefunction into a
multiverse of causal histories is the engine of cosmic acceleration. This can be formalized:

1. Branching Creates Events: Every quantum measurement or decoherence event causes
the universe to split into multiple branches. Each new branch represents a new set of
events being added to the total Causal Set of the multiverse.

2. Complexity as the Number of Histories: The global complexity of the multiverse,
, is defined as the total number of distinct classical histories (branches) that exist

at a given cosmic time.
3. The Drive to Complexify: The GSC model suggests that the universe evolves to

maximize its own information content. The negative sign on the  term in the action
implies that the universal wavefunction, , will evolve in such a way as to
maximize the number of events, . This is achieved by maximizing the rate of
branching, thus increasing the global complexity .

11.3  as an Emergent Pressure

From the perspective of any single branch (our universe), this drive to create new branches is
experienced as an intrinsic, outward "pressure" on the fabric of spacetime. The geometry of
our universe must expand to create more "room" (i.e., more future causal volume) for the
near-infinite potential branches to form.

The cosmological constant, , is the macroscopic manifestation of this informational
pressure. It is the measure of the GSC's intrinsic tendency to explore its own state space by
generating new, distinct histories. The observed cosmic acceleration is the geometric
response of our single causal history to the collective pressure of all the other possible
worlds that are constantly branching off from our own.

This provides a physical explanation for dark energy: it is the energy associated with the
continuous creation of new realities within the multiverse, as experienced from within one of
those realities.

12. Derivation of an Entropic Force from Multiverse Entanglement (Dark
Matter)

α ∝ −2Λ
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The phenomenon of dark matter can be understood within the GSC model not as a particle, but
as an emergent entropic force. This force arises from the entanglement between our specific
causal history and the vast ensemble of other histories in the multiverse.

12.1 Formalizing Causal Entanglement Density

A new quantity is defined, the multiverse entanglement density, , at a point  in
our universe. This quantity measures the density of entanglement between a small region
around  in our causal history, , and the ensemble of all other histories, . This
can be defined using the quantum mutual information, :

Regions of space with a high  are more strongly "connected" to the rest of the
multiverse. These regions correspond to the dense filaments of the cosmic web, where the
potential for branching and creating new histories is greatest.

12.2 Deriving the Entropic Force

An entropic force arises when a system resists a change that would decrease its entropy. In
the GSC framework, the total entropy is related to the total information content of the
multiverse. Moving a test mass  in our universe from a region of high  to a region of
low  would reduce the overall entanglement of the GSC state. The multiverse resists
this change.

The force is given by the standard formula for an entropic force: . In this context:

Temperature ( ): This is the Unruh temperature associated with the acceleration of the
test mass, . However, in the weak-field limit, a background temperature can be
associated to the holographic screen, related to the Hubble constant.
Entropy Gradient ( ): The change in entropy is related to the change in the multiverse
entanglement density. The gradient of entropy is therefore proportional to the gradient of

.

This leads to an entropic force on the test mass :

This force is not caused by the local mass-energy but by the large-scale entanglement
structure of the universe. It pulls objects towards regions of higher multiverse entanglement
—the cosmic web filaments.

12.3 Recovering the Newtonian Limit and MOND-like Behavior
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In the weak-field limit (e.g., within a galaxy), this entropic force acts as a correction to
standard Newtonian gravity. The total acceleration, , on a star would be:

Where  is a constant of proportionality. This provides a first-principles explanation for the
observed flat rotation curves of galaxies. In the outer regions of a galaxy, where the
Newtonian acceleration is weak, the entropic force term, driven by the galaxy's position
within a larger filament (a region of high ), becomes dominant. This creates the extra
"gravity" that is typically attributed to a dark matter halo.

This framework naturally explains why the "dark matter" effect appears to correlate with the
baryonic matter: the presence of a large galaxy (a region of high complexity and branching
potential) creates a significant local gradient in the multiverse entanglement density,

.

12.4 Conclusion: A New Paradigm for Dark Matter

The GSC model derives the phenomenon of dark matter from first principles as an emergent,
entropic force. It is the macroscopic manifestation of our universe's entanglement with the
greater multiverse. This provides a falsifiable alternative to the particle dark matter
hypothesis, one that is deeply integrated with the model's core concepts of emergent
spacetime and MWI cosmology.
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